Application of k - Nearest Neighbor on FeatureProjections Classi er to Text
نویسنده
چکیده
This paper presents the results of the application of an instance-based learning algorithm k-Nearest Neighbor Method on Feature Projections (k-NNFP) to text categorization and compares it with k-Nearest Neighbor Classiier (k-NN). k-NNFP is similar to k-NN except it nds the nearest neighbors according to each feature separately. Then it combines these predictions using a majority voting. This property causes k-NNFP to eliminate possible adverse eeects of irrelevant features on the classiication accuracy. Experimental evidence indicates that k-NNFP is superior to k-NN in terms of classiication accuracy in the presence of irrelevant features in many real world domains.
منابع مشابه
Application of k Nearest Neighbor on Feature Projections Classi er to Text Categorization
This paper presents the results of the application of an instance based learning algorithm k Nearest Neighbor Method on Fea ture Projections k NNFP to text categorization and compares it with k Nearest Neighbor Classi er k NN k NNFP is similar to k NN ex cept it nds the nearest neighbors according to each feature separately Then it combines these predictions using a majority voting This prop er...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملCombining Nearest Neighbor Classifiers Through Multiple Feature Subsets
Combining multiple classi ers is an e ective technique for improving accuracy. There are many general combining algorithms, such as Bagging or Error Correcting Output Coding, that signi cantly improve classi ers like decision trees, rule learners, or neural networks. Unfortunately, many combining methods do not improve the nearest neighbor classi er. In this paper, we present MFS, a combining a...
متن کاملFUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کامل